Pebblo Safe DocumentLoader
Pebblo enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organizationโs compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.
Pebblo has two components.
- Pebblo Safe DocumentLoader for Langchain
- Pebblo Daemon
This document describes how to augment your existing Langchain
DocumentLoader with Pebblo Safe DocumentLoader to get deep data
visibility on the types of Topics and Entities ingested into the Gen-AI
Langchain application. For details on Pebblo Daemon
see this pebblo
daemon document.
Pebblo Safeloader enables safe data ingestion for Langchain
DocumentLoader
. This is done by wrapping the document loader call with
Pebblo Safe DocumentLoader
.
How to Pebblo enable Document Loading?โ
Assume a Langchain RAG application snippet using CSVLoader
to read a
CSV document for inference.
Here is the snippet of Document loading using CSVLoader
.
from langchain.document_loaders.csv_loader import CSVLoader
loader = CSVLoader("data/corp_sens_data.csv")
documents = loader.load()
print(documents)
The Pebblo SafeLoader can be enabled with few lines of code change to the above snippet.
from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders import PebbloSafeLoader
loader = PebbloSafeLoader(
CSVLoader("data/corp_sens_data.csv"),
name="acme-corp-rag-1", # App name (Mandatory)
owner="Joe Smith", # Owner (Optional)
description="Support productivity RAG application", # Description (Optional)
)
documents = loader.load()
print(documents)